The PEEK pipe produced using continuous extrusion technology solves the technical problems of highly limited molding process products and easy internal shrinkage holes in injection molding process, while reducing losses and machining costs. It can be processed into ring parts such as sealing rings, piston rings, wear-resistant shaft sleeves, and valve seats. The components processed by PEEK pipe are widely used in industries such as petrochemical and electronic semiconductors.
16 years of experience in production and R & D of PEEK, PI, PPS and other profiles and parts.
Advanced and mature PEEK profile extrusion production line.
Have the ability of injection molding and machining PEEK parts of various specifications.
Continuous extrusion production line, large injection molding machine, molding machine, five axis machining center, high precision CNC lathe and other processing equipment.
3D coordinate projector, friction and wear testing machine, microcomputer controlled electronic universal testing ma chine, surface hardness tester, etc.
Extruding PEEK rod, sheet, tube and other profiles with com prehensive specifications and large stock.
All kinds of PEEK filaments and capillaries are extruded.
PEEK profile extrusion can be customized according to cus tomer requirements.
Tick comprehensively analyze the material properties and constantly improve the formulation design and process.
Strictly control the enterprise standards and quality inspection process to ensure the factory quality of each product.
It has a good cooperative relationship with the raw material suppliers such as Victrex, vespl, German engineering plastics and other raw materials suppliers in the UK, with stable raw materials sources.
Test items | Test criteria | Test conditions | Units | NJSSPEEK-1000 | NJSSPEEK-G1030 | NJSSPEEK-C1030 |
---|---|---|---|---|---|---|
Pure resin | 30% glass fiber | 30% carbon fiber | ||||
Density | ISO1183 | Crystal | g/cm3 | 1.3 | 1.51 | 1.4 |
Water absorption rate (3.2mm thick tensile bar, soaking test) | ISO62-1 | 24h, 23℃ | % | 0.07 | 0.04 | 0.05 |
Balance, 23℃ | % | 0.4 | 0.4 | 0.3 | ||
Tensile strength | ISO527 | Yield, 23℃ | MPa | 100 | 175 | 122 |
Elongation at break | ISO527 | Fracture, 23℃ | % | 20 | 2.7 | 2.5 |
Bending strength | ISO178 | Yield, 23℃ | MPa | 165 | 265 | 268 |
Bending modulus | ISO178 | 23℃ | GPa | 4.1 | 11.3 | 8.9 |
Compressive strength | ISO604 | 23℃ | MPa | 125 | 250 | 193 |
Impact strength of simply supported beam | ISO179/1eA | There is a gap | kJ/m2 | 7 | 8 | 7 |
ISO179/1U | No gap | kJ/m2 | 55 | 38 | ||
Impact strength of cantilever beam | ISO180/A | There is a gap | kJ/m2 | 7.5 | 10 | 9 |
ISO180/U | No gap | kJ/m2 | - | 60 | 45 | |
Shore D hardness | ISO868 | 23℃ | 85 | 88 | 88 | |
Melting point | ISO11357 | - | ℃ | 343 | 343 | 343 |
Glass transition temperature | ISO11357 | Start | ℃ | 143 | 143 | 143 |
Specific heat capacity | DSC | 23℃ | kJ/kg℃ | 2.2 | 1.7 | 1.8 |
Coefficient of thermalexpansion | ISO11359 | Below Tg along the flow direction | ppm/K | 45 | 18 | 5 |
Below Tg along the flow direction | ppm/K | 120 | 18 | 6 | ||
Heat distortion temperature | ISO75-f | 1.8Mpa | ℃ | 152 | 315 | 315 |
Thermal conductivity | ISO22007-4 | 23℃ | W/mK | 0.29 | 0.3 | 0.95 |
Dielectric strength | IEC60243-1 | 2mm | kV/mm | 23 | 25 | - |
Dielectric constant | IEC60250 | 23℃,1KHz | - | 3.1 | 3.2-3.4 | - |
23℃,50Hz | - | 3 | - | - | ||
Volume resistivity | IEC60093 | 23℃,1V | Ω·cm | 1016 | 1016 | 105 |
275℃ | Ω·cm | 109 | - | - |
OD(mm) | ID(mm) | length(mm) | Weight(kg) |
---|---|---|---|
30 | 10 | 1000 | 0.94 |
30 | 15 | 1000 | 0.82 |
30 | 20 | 1000 | 0.68 |
40 | 25 | 1000 | 1.23 |
45 | 25 | 1000 | 1.69 |
50 | 30 | 1000 | 1.93 |
70 | 40 | 1000 | 3.83 |
70 | 50 | 1000 | 3.15 |
Other specifications can be customized |